51 research outputs found

    Investigating Representations of Facial Identity in Human Ventral Visual Cortex with Transcranial Magnetic Stimulation

    Get PDF
    The occipital face area (OFA) is face-selective. This enhanced activation to faces could reflect either generic face and shape-related processing or high-level conceptual processing of identity. Here we examined these two possibilities using a state-dependent transcranial magnetic stimulation (TMS) paradigm. The lateral occipital (LO) cortex which is activated non-selectively by various types of objects served as a control site. We localized OFA and LO on a per-participant basis using functional MRI. We then examined whether TMS applied to either of these regions affected the ability of participants to decide whether two successively presented and physically different face images were of the same famous person or different famous people. TMS was applied during the delay between first and second face presentations to investigate whether neuronal populations in these regions played a causal role in mediating the behavioral effects of identity repetition. Behaviorally we found a robust identity repetition effect, with shorter reaction times (RTs) when identity was repeated, regardless of the fact that the pictures were physically different. Surprisingly, TMS applied over LO (but not OFA) modulated overall RTs, compared to the No-TMS condition. But critically, we found no effects of TMS to either area that were modulated by identity repetition. Thus, we found no evidence to suggest that OFA or LO contain neuronal representations selective for the identity of famous faces which play a causal role in identity processing. Instead, these brain regions may be involved in the processing of more generic features of their preferred stimulus categories

    Modulation of Visual Cortical Excitability by Working Memory: Effect of Luminance Contrast of Mental Imagery

    Get PDF
    Although much is known about the impact of stimulus properties such as luminance contrast, spatial frequency, and orientation on visually evoked neural activity, much less is known about how they modulate neural activity when they are properties of a mental image held in working memory (WM). Here we addressed this question by investigating how a parametric manipulation of an imagined stimulus attribute affects neuronal excitability in the early visual cortex. We manipulated luminance contrast, a stimulus property known to strongly affect the magnitude of neuronal responses in early visual areas. Luminance contrast modulated neuronal excitability, as assessed by the frequency of phosphenes induced by transcranial magnetic stimulation (TMS) with the exact nature of this modulation depending on TMS intensity. These results point to a strong overlap in the neuronal processes underlying visual perception and mental imagery: not only does WM maintenance selectively engage neurons which are tuned to the maintained attribute (as has previously been shown), but the extent to which those neurons are activated depends on the image contrast (as is the case with visually evoked responses). From a methodological viewpoint, these results suggest that assessment of visual cortical excitability using TMS is affected by the TMS intensity used to probe the neuronal population

    Only minimal differences between individuals with congenital aphantasia and those with typical imagery on neuropsychological tasks that involve imagery.

    Get PDF
    Aphantasia describes the experience of individuals who self-report a lack of voluntary visual imagery. It is not yet known whether individuals with aphantasia show deficits in cognitive and neuropsychological tasks thought to relate to aspects of visual imagery, including Spatial Span, One Touch Stocking of Cambridge, Pattern Recognition Memory, Verbal Recognition Memory and Mental Rotation. Twenty individuals with congenital aphantasia (VVIQ  35). A group difference was found in the One Touch Stocking of Cambridge task for response time, but not accuracy, when the number of imagined moves that participants had to hold in their heads to complete the task increased. Similarly, a group difference in response time was apparent in the mental rotation task, but only in the subgroup of aphantasic participants who reported a severe deficit in visual imagery (VVIQ score of 16). These results suggest that the cognitive profile of people without imagery does not greatly differ from those with typical imagery when examined by group. In addition, the severity of aphantasia (and VVIQ criterion) may be an important factor to consider when investigating differences in imagery experience. Overall, this study raises questions about whether or not aphantasia represents a difference in cognitive function or in conscious experience

    Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS

    Get PDF
    Behavioral effects of TMS have been shown to depend on various factors, such as neural activation state, stimulation intensity, and timing of stimulation. Here we examined whether these factors interact, by applying TMS at either sub- or suprathreshold intensity (relative to phosphene threshold, PT) and at different time points during a state-dependent TMS paradigm. The state manipulation involved a behavioral task in which a visual prime (colour grating) was followed by a target stimulus which could be either congruent, incongruent or partially congruent with the colour and orientation of the prime. In Experiment 1, single-pulse TMS was applied over the early visual cortex (V1/V2) or Vertex (baseline) at the onset of the target stimulus – timing often used in state-dependent TMS studies. With both subthreshold and suprathreshold stimulation, TMS facilitated the detection of incongruent stimuli while not significantly affecting other stimulus types. In Experiment 2, TMS was applied at 100 ms after target onset –a time window in which V1/V2 is responding to visual input. Only TMS applied at suprathreshold intensity facilitated the detection of incongruent stimuli, with no effect with subthreshold stimulation. The need for higher stimulation intensity is likely to reflect reduced susceptibility to TMS of neurons responding to visual stimulation. Furthermore, the finding that in Experiment 2 only suprathreshold TMS induced a behavioral facilitation on incongruent targets (whereas facilitations in the absence of priming have been reported with subthreshold TMS) indicates that priming, by reducing neural excitability to incongruent targets, shifts the facilitatory/inhibitory range of TMS effects

    State-dependent TMS effects in the visual cortex after visual adaptation : A combined TMS-EEG study

    Get PDF
    Objective: The impact of transcranial magnetic stimulation (TMS) has been shown to depend on the initial brain state of the stimulated cortical region. This observation has led to the development of paradigms that aim to enhance the specificity of TMS effects by using visual/luminance adaptation to modulate brain state prior to the application of TMS. However, the neural basis of interactions between TMS and adaptation is unknown. Here, we examined these interactions by using electroencephalography (EEG) to measure the impact of TMS over the visual cortex after luminance adaptation. Methods: Single-pulses of neuronavigated TMS (nTMS) were applied at two different intensities over the left visual cortex after adaptation to either high or low luminance. We then analyzed the effects of adaptation on the global and local cortical excitability. Results: The analysis revealed a significant interaction between the TMS-evoked responses and the adaptation condition. In particular, when nTMS was applied with high intensity, the evoked responses were larger after adaptation to high than low luminance.Conclusion: This result provides the first neural evidence on the interaction between TMS with visual adaptation. Significance: TMS can activate neurons differentially as a function of their adaptation state.(c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Information-Based Approaches of Noninvasive Transcranial Brain Stimulation

    Get PDF
    Progress in cognitive neuroscience relies on methodological developments to increase the specificity of knowledge obtained regarding brain function. For example, in functional neuroimaging the current trend is to study the type of information carried by brain regions rather than simply compare activation levels induced by task manipulations. In this context noninvasive transcranial brain stimulation (NTBS) in the study of cognitive functions may appear coarse and old fashioned in its conventional uses. However, in their multitude of parameters, and by coupling them with behavioral manipulations, NTBS protocols can reach the specificity of imaging techniques. Here we review the different paradigms that have aimed to accomplish this in both basic science and clinical settings and follow the general philosophy of information-based approach

    Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior Journal: Brain and Cognition

    Get PDF
    The behavioral effects of Transcranial Magnetic Stimulation (TMS) are often nonlinear; factors such as stimulation intensity and brain state can modulate the impact of TMS on observable behavior in qualitatively different manner. Here we propose a theoretical framework to account for these effects. In this model, there are distinct intensity ranges for facilitatory and suppressive effects of TMS – low intensities facilitate neural activity and behavior whereas high intensities induce suppression. The key feature of the model is that these ranges are shifted by changes in neural excitability: consequently, a TMS intensity, which normally induces suppression, can have a facilitatory effect if the stimulated neurons are being inhibited by ongoing task-related processes or preconditioning. For example, adaptation reduces excitability of adapted neurons; the outcome is that TMS intensities which inhibit non-adapted neurons induce a facilitation on adapted neural representations, leading to reversal of adaptation effects. In conventional “virtual lesion” paradigms, similar effects occur because neurons not involved in task-related processes are inhibited by the ongoing task. The resulting reduction in excitability can turn high intensity “inhibitory” TMS to low intensity “facilitatory” TMS for these neurons, and as task-related neuronal representations are in the inhibitory range, the outcome is a reduction in signal-to-noise ratio and behavioral impairment

    Why is “blindsight” blind? A new perspective on primary visual cortex, recurrent activity and visual awareness

    Get PDF
    The neuropsychological phenomenon of blindsight has been taken to suggest that the primary visual cortex (V1) plays a unique role in visual awareness, and that extrastriate activation needs to be fed back to V1 in order for the content of that activation to be consciously perceived. The aim of this review is to evaluate this theoretical framework and to revisit its key tenets. Firstly, is blindsight truly a dissociation of awareness and visual detection? Secondly, is there sufficient evidence to rule out the possibility that the loss of awareness resulting from a V1 lesion simply reflects reduced extrastriate responsiveness, rather than a unique role of V1 in conscious experience? Evaluation of these arguments and the empirical evidence leads to the conclusion that the loss of phenomenal awareness in blindsight may not be due to feedback activity in V1 being the hallmark awareness. On the basis of existing literature, an alternative explanation of blindsight is proposed. In this view, visual awareness is a “global” cognitive function as its hallmark is the availability of information to a large number of perceptual and cognitive systems; this requires inter-areal long-range synchronous oscillatory activity. For these oscillations to arise, a specific temporal profile of neuronal activity is required, which is established through recurrent feedback activity involving V1 and the extrastriate cortex. When V1 is lesioned, the loss of recurrent activity prevents inter-areal networks on the basis of oscillatory activity. However, as limited amount of input can reach extrastriate cortex and some extrastriate neuronal selectivity is preserved, computations involving comparison of neural firing rates within a cortical area remain possible. This enables “local” read-out from specific brain regions, allowing for the detection and discrimination of basic visual attributes. Thus blindsight is blind due to lack of “global” long-range synchrony, and it functions via “local” neural readout from extrastriate areas

    How is working memory content consciously experienced? The 'conscious copy' model of WM introspection

    Get PDF
    We address the issue of how visual information stored in working memory (WM) is introspected. In other words, how do we become aware of WM content in order to consciously examine or manipulate it? Influential models of WM have suggested that WM representations are either conscious by definition, or directly accessible for conscious inspection. We propose that WM introspection does not operate on the actual memory trace but rather requires a new representation to be created for the conscious domain. This conscious representation exists in addition and in parallel to the actual memory representation. The existence of such a separate representation is revealed by and reflected in the qualitatively different functional characteristics between the actual memory trace and its conscious experience, and their distinct interactions within external visual input. Our model differs from state-based models in that WM introspection does not involve a change in the state of WM content, but rather involves the creation of a new, second representation existing in parallel to the original memory trace
    • …
    corecore